If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-3080=0
a = 1; b = 1; c = -3080;
Δ = b2-4ac
Δ = 12-4·1·(-3080)
Δ = 12321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12321}=111$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-111}{2*1}=\frac{-112}{2} =-56 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+111}{2*1}=\frac{110}{2} =55 $
| -20+18n=-8(-3n-20)+4n | | 19-20h=-7-11h-12h | | 3=(2-f)15 | | -3.7x=33.3 | | 5x+20=8x-43 | | 440+x=610 | | 5/9g+185/9=1/6g+3 | | a÷16=-3 | | −14+2x=8 | | 10x+9=4x- | | 2.75b+15=28.75 | | 4x+3=27 | | -6v-2-1=-7v+4 | | 5=12+-4/x | | 2x+6=2(4x-10) | | -16-15z+z=7(-2z-13) | | −14+2x=8, | | 6y=4=20 | | 21/1+i=0 | | 6.3=2.65(s-8)+1 | | s/18.42s=20.00 | | 6s+13=19 | | 10x^2+9=90 | | 5b+13=-8(6+7B) | | h(4)=4-4 | | 17/25=x/45 | | -4x+2=-1x+2 | | 826=14j | | h(4)=-4-4 | | 2p+12=-12+2p-3 | | 6y+5=35, | | 1.7m+9.11=-7.69-1.8m |